Sizing pipes

It is possible to calculate an approximate pipe size for a given flow rate using the following formula:

```
\(\mathrm{di}=35.7 \sqrt{ } \mathrm{Q}\)
    V
Where
\(\mathrm{V}=\) Flow velocity ( \(\mathrm{m} / \mathrm{s}\) )
di = pipe inside diameter (mm)
\(Q=\) Flow rate (1/s)
```

It is quite common for the flow velocity to be unknown at this stage. The following values are regarded as acceptable Liquid velocities for plastic system:

Suction $=0.5-1.0 \mathrm{~m} / \mathrm{s}$
Delivery $=1.0-3.0 \mathrm{~m} / \mathrm{s}$
Example:
What will be a suitable size for a pipe carrying water at a flow rate of 100 litres per second with a flow velocity of 1.5 metres persecond?

$$
\begin{array}{r}
\mathrm{di}=35.7 \sqrt{ } 100 \\
1.5
\end{array}
$$

$$
\mathrm{di}=291 \mathrm{~mm}
$$

Therefore the optimum internal diameter should be 291 mm (minimum). Selecting a pipe with an internal diameter smaller that the optimum size will creat increased pressure drop.

